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Abstract-Local equilibrium effect in systems with transport of energy, matter and electric charge is shown 
to be sufficient for local stability of the processes which satisfy a dissipative variational formalism for 
perturbations relaxing to a steady state. It is postulated that the effect is an extremal property of those 
thermodynamic systems which minimize dissipation and whose evolution is governed by an extremum 
principle describing their natural tendency to fast local relaxations. A pertinent principle extends that of 
Onsager’s [l] to nonstationary quasilinear regime and electrochemical transport. Its resulting form describes 
an extremum of a functional structure related to grand thermodynamic potential, the Legendere transform 
of entropy. The principle is set in the physical space-time rather than in the three-dimensional (3D) space 
and, as such, it substantiates the joint role of thermodynamic potentials and intensity of dissipation. For 
isolated systems the principle implies a least possible growth of entropy under constraints imposed by 
conservation laws, whereas for nonequilibrium steady-states its perturbational form implies minimum of 
a work potential at the steady state. Phenomenological equations, equations of change and bulk overvoltage 
properties can be derived in complex electrochemical systems. Nonequilibrium temperatures and chemical 
potentials are interpreted in terms of the Lagrangian multipliers of conservation constraints. These quan- 
tities converge to the classical thermodynamic intensities when the local equilibrium is attained. Copyright 

0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

We consider the dynamics of perturbations relaxing 
towards nonequilibrium steady states in systems with 
coupled transfer of the heat, mass and electric charge. 
The transients may occur in the bulk of an elec- 
trochemical cell or electrolyser. In the context of a 
variational principle we testify the meaning and conse- 
quences of the assumption that the system is in local 
thermal equilibrium. The system is a multicomponent 
one with various transport phenomena in the bulk. 
The macroscopic motion of the system is neglected by 
the choice of the vanishing barycentric frame and 
assumption about the constancy of the system density, 
p, consistent with the mechanical equilibrium assump- 
tion. This mechanical equilibrium assumption is a sim- 
plification which makes the effects considered more 
transparent. With this simplification, which is 
sufficient for a large number of cells encountered in 
the practice, the total mass density, p, is a constant 
parameter rather than the state variable, and a ref- 
erence frame in which the whole system rests easily 
follows. 

In spite of large number of works, the proper theor- 
etical setting for entropy and other thermodynamic 

potentials in nonequilibrium systems is still not clear. 
Since Onsager’s syntheses and his original extremum 
principle [14] there have been numerous attempts 
to construct variational and extremum principles for 
irreversible processes, aimed, in particular, on non- 
linear generalizations of the theory. Prigogine’s [5] 
reformulation has focused on the entropy production 
rather than thermodynamic potentials and didn’t 
expose necessity of using of two dissipative potentials, 
which emerges in all schemes associated with Fokker- 
Planck equation. On the other hand, for mechanical 
systems Yang and Song [6] have formulated general 
theorems of minimum energy and energy dissipation 
rate. The latter asserts that for a closed and dissipative 
system in stable dynamic equilibrium its total rate of 
the energy dissipation is at its minimum value which is 
compatible with the constraints applied to the system. 
Essex [7] however has stressed a potential of minimum 
entropy theorems to yield the nonlinear balance equa- 
tions for radiative transfer. By introduction of an orig- 
inal concept of caloric coordinate Grrnela and Teich- 
man [8] have been able to state a negative-entropy- 
based H theorem in Lagrangian coordinates, thus 
showing that, perhaps, this may be a more proper 
setting for the theorem of maximum entropy S than 
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NOMENCLATURE 

A cross-sectional area 
b Lagrangian multiplier of relaxation 

term 
C column vector of molar densities, 

equation (8) 
(‘, molar concentration of the ith 

component 

:, 
internal energy of unit volume 
Biot vector associated with flux J, 

11, partial molar enthalpy of ith 
component 

i molar flux density of electric current 
J column matrix of independent fluxes, 

equation (7) 

JC density of effective energy Hux. 
equation (4) 

J, density of heat flux 

J, molar flux density of ith component 

J, density of entropy flux 

J” density of internal energy flux 

M1 molar mass of kth component 
L Onsagerian matrix of 

phenomenological coefficients 

4 vector of generalized state comprising 
u, J and w 

r radius vector of spatial coordinates 
S, ST total entropy and its Legendre 

transform, respectively 
.s, entropy of unit volume 
T temperature 
t time 
U Gibbsian vector of independent 

thermodynamic intensities, 
equation (13) 

W Onsagerian vector of independent 
transport intensities or Lagrangian 
multiplier of conservation laws 

k’ volume 
X vector of independent thermodynamic 

forces, equation (14). 

Greek symbols 
V nabla operator 
(i first differential, first-order 

perturbation 
($2 second differential, second-order 

perturbation 

Q, electric potential 

Pi molar chemical potential of kth 
component 

PI = P,M,M,’ -ph transfer potential of 
kth component 

(r entropy production of unit 
volume. 

Subscripts 

q heat 
e total energy 
i ith component 
S entropy 
U internal energy. 

Superscripts 
T transpose matrix, Legendre 

transform 
t time. 

various Eulerian frames. Recent microscopic 
approach of Evans and Baranyi [9] transfers the prob- 
lem to phase space by postulating that. subject to 
externally imposed constraints, the rate of decrease of 
the volume of phase space, which is accessible to the 
system, is a local minium. However no general strat- 
egy has been worked out until now which could 
allow one to systematically handle nonequilibrium 
thermodynamic potentials in various irreversible 
processes. 

On the other hand, difficulties in finding exact vari- 
ational formulations for irreversible processes are still 
very serious. The well-known Gyarmati’s principle 
[l&13] and some related approaches [14] while of a 
considerable generality admitting generalizations to 
quasi-linear processes, belong to the class of the 
restricted variational principles of Rosen’s type [I 51 or 
local potential type [ 161 where some variables and/or 
derivatives are subjectively ‘frozen’ to yield a relevant 
result. Bypassing of older approaches to minimum 

entropy production [ 171 seems to be implied in a novel 
general approach of Nyiri [ 181 based on construction 
of certain potentials similar to those known in the 
theory of electromagnetic field. The difficulties have 
been especially strong in situations when the irre- 
versible phenomena accompany the dynamical ones, 
the latter being representative for various partial 
differential equations of physics [ 191. 

In this work an extremum principle following from 
an excess entropy balance is formulated for irre- 
versible electrochemical transport. The possibility of 
variational formulation calls however for sub- 
stantiation in case when irreversibility enters into the 
issue. It is already well recognized, that the system of 
the differential equations admits a variational for- 
mulation if and only if it is selfadjoint [2&27]. This 
means that stringent conditions involving the partial 
derivatives of the related differential operator must be 
identifically specified. It is also well known that the 
typical equations of irreversible processes are, as a 
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rule, not self-adjoint [24,27,28], so that one can doubt 
in the existence of the variational formulation in our 
case. A suitable substantiation is : while equations of 
irreversible processes do not admit variational for- 
mulation in the state space spanned on their own 
dependent variables (this is the situation where the 
non-self adjointness applies), a variational for- 
mulation in the extended space spanned on these state 
variables and certain new variables, called state 
adjoints, is always possible [27]. This substantiates 
the so-called composite variational principles, with 
functionals which are scalar products of the original 
differential equations and adjoint variables [20, 27. 
281. With this concept, and having a dissipation 
expression and physical conservation laws (for 
energy, momentum and species), we are searching here 
for an extremum of a nonequilibrium potential 
around a steady state as well as its limiting classical 
case of extremum of a thermodynamic potential [29]. 
We assume that the steady state is sufficiently close to 
equilibrium so that the Onsagerian reciprocity still 
may be assumed. This limitation is not severe for the 
transfer processes considered, in which the appli- 
cability range of the Onsager symmetries is quite vast, 
nonetheless, since the limitation is quite fundamental, 
it will be relaxed in a future work along this line. 

In fact, a majority of successful recent variational 
formulations for irreversible continua involve the 
space expansion. This is clear if one takes into account 
that (by suitable substitutions) the formulations 
which use higher order functionals [18, 30-331 can 
be broken down into those based on the first-order 
functionals in an enlarged space. The role of the 
additional variables has also been appreciated in vari- 
ous action-based approaches to irreversible [34] and 
reversible continua [35-42] where conservation laws 
can be derived as independent results. A crucial role 
of new variables has already been firmly established. 
Some older variational principles which didn’t intro- 
duce new variables, had to operate with an exponent- 
ial factor containing explicitly the time, to preserve 
the ‘time arrow’, but they have turned out to be too 
restrictive [43, 441. A synthetic analysis of these older 
approaches has been summarized in reviews [4345]. 
whereas those novel ones, operating in enlarged 
spaces, are still waiting for their formal adoption in 
extended thermodynamics [46,47]. 

For the standard set of the balance equations (with 
balances of the energy, momentum and species) and 
with the entropy generation criterion. the new or 
adjoint variables are sort of the nonequilibrium ther- 
modynamic intensities [48]. For a stable local equi- 
librium they tend to the well-known equilibrium inten- 
sities : temperature reciprocal, Planck potentials, etc. 
Then, the states of the whole system become con- 
strained to reside on the Gibbs equilibrium manifold 
(where the Gibb’s fundamental equation holds), and 
both state and adjoint variable are connected by that 
equation. 

Nonetheless, at nonequilibrium the state and 

adjoint variables are no longer dependent. They both 
span an extended space of the (dependent) ther- 
modynamic variables. As follows from an earlier 
analysis [48] [see also equations (26)-(28)], any per- 
tinent description without local equilibrium assump- 
tion must consistently use a model comprising both 
the state variables and the adjoints. We show here that 
such a physical picture is consistent with a variational 
principle of minimum dissipation which governs relax- 
ations to a steady state, and simplifies to that of 
Onsager in case of the equilibrium steady-state. 

An excess of dissipation intensity with respect to a 
steady-state, equation (21), is described by two per- 
turbed dissipation functions, 6% and #Y’, of 
Onsager’s type, expressed in terms of the extended 
state (C, J) [or (II, J)], its perturbations, 6C and 6J, 
and the derivatives of perturbations, d&Z/at, VK., 
etc. An excess entropy four-vector (6s,,6J,), whose 
four-divergence is generated by motions along 
extremal paths of the variational solution, pertains, 
as a rule, to an excess of a kinetic entropy, which 
may involve both the classical (static) variables C and 
fluxes J. This entropy and its excess are therefore 
certain nonequilibrium (extended) quantities. A dis- 
tinction between the static (Gibbsian) and the kinetic 
(Onsagerian, evolution related) entropies manifests in 
such situations in an explicit way. The distinction, and 
the related difference between the thermodynamic and 
kinetic transfer potentials (u and w), is a general physi- 
cal property, one which has a nontrivial significance 
for the nonequilibrium thermodynamic theory. 

2. TOWARDS MINIMIZING THE EXCESS 

ENTROPY PRODUCTION 

For conservative systems the evolution of an iso- 
lated system with gradients in temperature T and con- 
centrations c; follows the path which minimizes the 
final entropy of the system, under the system con- 
straints which include the conservation laws [48]. 
While entropy grows, its growth is the least possible 
one under the system constraints. This statement 
emphasizes the role of the entropy itself rather than 
the entropy production. Here, the relaxation towards 
a state state is in question, but an analogous while a 
more general reasoning applies. By implying a least 
increase of the integral representing the excess entropy 
production during a transient relaxation to a steady 
state (a nonisolated system) one can derive perturbed 
equations of change and perturbed phenomenological 
equations, under the given (perturbed) dissipation 
potentials and the well-known information contained 
in the (perturbed) conservation laws. 

The above concept is here verified for elec- 
trochemical systems. It turns out to be useful, since 
the stability of the quasilinear heat, mass and electric 
charge transfer follows directly from equation (21), 
for constant potentials at the space-time boundary 
(under assumption of the negligible convection and 
absence of viscosity). The extension is also interesting 
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because it shows explicitly the role of the electric work 
perturbation in the perturbed balances of mass, energy 
and electric charge, equations (l)-(3), (5). and also in 
excess equations for thermodynamic potentials, equa- 
tions (9) (11) and (24). This analysis sheds also a new 
light towards understanding earlier results which deal 
with the conservative wave (hyperbolic) heat and mass 
transfer [48]. It should be noted that the present paper 
analyses the (parabolic) electrochemical systems 
which are, in fact, nonconservative, due to the work 
of the external electric field, and it is only the potential 
property of this work which makes the direct exten- 
sion of previous variational results possible. The prin- 
ciple, however, will need reformulation whenever the 
role of the magnetic effects and/or deviations from 
Onsagerian symmetries become essential. 

As distinguished from ref. [48] the working for- 
mulae of the present paper use purposely the definition 
of state in terms of thermostatic intensities rather than 
densities, to show explicitly that the consequence of 
the independence of the state variables and the adjoint 
variables is the existence of two different tempera- 
tures They may be called the Gibbsian (thermo- 
dynamic) temperature and Onsagerian or transfer 
temperature, and they coincide only at the local equi- 
librium. Analogous effect pertains to the chemical 
potentials. The present extension uses the per- 
turbation of an effective energy flux 6J, which includes 
the transfer of the electric energy. The electric charge 
conservation yields the divergence property for the 
electric work which makes use of J, admissible, 
dW/dt = i-E = -i*gradb = -div(i&). This prop- 
erty is valid when the role of the electromagnetic vec- 
tor potential A in the electric field E can be neglected. 

3. PERTURBED BALANCE EQUATIONS AND 

IRREVERSIBLE THERMODYNAMICS 

Assuming negligible convection, absence of vis- 
cosity terms, and electroneutrality of the solution. the 
perturbed conservation equations which characterize 
transients of mass, electric current, and energy are 

i?sc, 
F+V.6J, =0 

V*&=O (2) 

dbe, 
F +V*6J, = -6(i*V4). 

Here c,, and e, are the molar concentrations and 
internal energy per unit volume, and J,, J,, and i are 
respectively the flux densities of independent com- 
ponent fluxes. internal energy flux and electric current. 
The immediate relaxation of the electric current is the 
consequence of the electroneutrality effect incor- 
porated in the model, yet we will keep equation (2) in 
the above form, to allow generalizations to the form 
of equation (1) in some involved cases. (The same 
remark applies to some other formulas with non- 

vanishing 6i in the further part of the text.) The com- 
ponents are neutral [49-521, set according to the Gibbs 
phase rule [52, 531. As clarified by Sundheim [49] 
this setting leads to the independent thermodynamic 
fluxes. The description of electrochemical systems in 
terms of neutral components should be distinguished 
from the conventional ionic description [ 17, 541. The 
visible similarity of the electrochemical model to the 
standard model of the simultaneous heat and mass 
transfer (without electric current) is the consequence 
of using merely component description instead of the 
ionic description. Yet, in spite of this similarity, the 
role of the electric current i in the component-based 
model is quite nontrivial and the model, equations 
(l)-(28), describes ionic systems as precisely as the 
conventional ionic model as long as the charge sep- 
aration effects can be neglected. This property makes 
model applicable to the transport in the bulk, where 
the electroneutrality holds. For i = V4 = 0 all proper- 
ties of the classical thermal diffusion systems are re- 
covered. A proof of the equivalence between the two 
descriptions is available [49]. We stress that the use 
of the component description has several important 
operational advantages that have been appreciated in 
full only recently. These are : omission of the trouble- 
some thermodynamic properties of ions, use of the 
pure chemical (not electrochemical) potentials, work- 
ing with sets of independent thermodynamic fluxes, 
explicit electric current in place of partial ionic flows, 
use of operational electric potentials. and an easy, 
natural description of electro-mechanical couplings 
[5&52]. Recent thermo-electrochemistry uses the 
component formalism quite commonly and success- 
fully. in particular to highly nonisothermal cells and 
electrolysers with fused salts [5 1, 521. 

The energy equation (3) contains the perturbation 
of the electric power term -i * VC$ and the divergence 
of the perturbed energy flux 6J,. The energy flux 
J, = J, + Bz,J, where J, is the heat flux. Introducing 
the effective energy flux 

J, = J,+$i = J,+ihjJ,+4i 
I 

and using the charge conservation law in equation (3) 
the perturbed energy equation (with the electric work 
incorporated) becomes sourceless 

$” +V*SJ, = 0. 

Thus. all perturbed balance constraints take the form 
of the vanishing space-time divergences and can be 
written in a common matrix notation [ 171 

d6C 
X+V*6J=0. 

The above equation describes the perturbation of the 
conservation laws with respect to arbitrary reference 
state. In our case it is a steady-state. Equation 
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(6) should be used with the matrix of independent 
fluxes J 

J=(J,,J,,J2 ,... J,_,,i)T (7) 

(the superscript T means transpose of the matrix) and 
for the corresponding column vector of densities C 

c =(e,,c,,c, )... C,_,,O)=. (8) 

The nth mass flux J, has been eliminated by using 
the condition ZJjMi = 0 for i = 1, 2, . . . n. The 
last component of C equals zero because of the 
electroneutrality. 

Now we need to find an equation describing the 
perturbation of the entropy four-vector, 6(s,, J,). 
Since the derivation proceeds in the way analogous to 
that known while deriving the standard expression for 
the entropy production [17, 511 we only adduce here 
the final result. After combining the twice-perturbed 
classical Gibbs equation [equation (17) for a = 0] with 
perturbed conservation laws (6), the four-divergence 
of the second differential of the entropy four-vector 
6*a is obtained. Two alternative forms can be used, 
each based on the classical, local equilibrium entropy. 

The first form deals with the traditional variables 

= 6J;V6T- - i SJi.VS(piT-‘) 
i= I 

= -T-' 
( 

SJ;V?IlnT+t 6Ji*VT6pi+6i*V6# 
,= I 

(9) 

and the perturbation of the entropy flux, 6J,, ex- 
pressed as 

(10) 

where /ik = p,MkM; ’ -pk. The unperturbed quan- 
tities pertain to the reference steady state. 

The second form is expressed in terms of the con- 
served fluxes 

$*a = 6J;V6T-’ - i SJ;*V6(piT-‘) 
i=l 

-&i*V6(4T-‘) 
n--l 

= 6J;V6T-‘f 16J;V6(/&T-‘) 
i=l 

-&*V6(e5T-‘) (11) 

and 

These equations contain (in the perturbed form) the 
vector of the transport potentials u, the matrix of 
independent fluxes J, equation (7) and the associated 
vector of the independent thermodynamic forces 
x=vu 

u =(T-',p,T-',p,T-',...p,_,T-',-IT-') 

(13) 

X=Vu=(VT-‘,V(P,T-‘),V(P2T-‘), 

...V(fi~-,T-‘),-V(~T-‘))T. (14) 

In the matrix notation introduced, the perturbations 
of the conserved currents obey the simple relations 

6J, = u.6J+u.L.V6u (1% 

$*cr= ~J.V~U+L:V~UV~U. (16) 

The arrows lead the reader to the corresponding 
expressions obeyed on the extremal surfaces of the 
governing functional (21) ; clearly, the L terms in 
equations (15) and (16) are not a starting formula but 
rather an outcome of our variational formulation for 
perturbations. Yet the positiveness of the excess 
entropy production in equation (11) is associated with 
the standard phenomenology, whose perturbed form 
is indicated in equation (16) by arrow. We admit that 
the Onsager’s matrix L may depend on the thermo- 
dynamic state (represented by the vector C or u). This 
pertains to the so-called quasilinear description [12] 
which is more realistic and useful than the standard 
linear theory. 

The state space of a nonequilibrium system is 
spanned on both the classical variables and the fluxes. 
Consequently (in an incompressible system with con- 
stant density p = CMici) the entropy density s, = ps 
should satisfy an extended Gibbs equation 

ds, = ii.dC+a*dJ (17) 

where II = &/aC and a = as,/aJ are corresponding 
adjoints of the density C and flux J. It is only at the 
genuine equilibrium limit (at the Gibbs surface) when 
B = II, where u is defined by equation (13). This limit 
involves the equilibrium entropy obeying dgq = 
ds, = u .dC, and its derivatives u = ac/aC which 
depend on the classical variables only. These limiting 
quantities characterize the classical, static entropy at 
the local equilibrium and define the corresponding 
transport potentials II, equation (13) in terms of this 
static entropy. Clearly, equations (9)-( 16) describe 
merely this equilibrium limit, which, while restricting 
the system behavior severely, is nonetheless unusually 
common. Our analysis of relaxing perturbations in 
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Sections 4 and 5 shows how this limit is approached 
by the system. 

Undiscovered until now. important features of the 
four-divergence of the entropy four-vector per- 
turbation cT’a are worth stressing. These properties 
have caused our preference in using this quantity 
instead of the standard time derivative of the second 
differential of the entropy [ 161. As shown by equations 
(9) and (I I ), the former leads to the excess entropy 
production without any limitations related to the sys- 
tem behavior at its boundary. whereas the latter does 
thisjob only for (sometimes too subjectively assumed) 
vanishing boundary perturbations of the extended 
state (C. J). Moreover. in place of the four-vector of 
the entropy. a four-vector of another thermodynamic 
potential can be used. which is obtained from the 
former via Legendre transformation for each vector 
component, and the four-divergence of the second 
differential of that new four-vector will again yield the 
same excess entropy production. 

Let us verify the above statement in case ofthe local 
equilibrium (where J, = J *II) for the four-vector of 
the thermodynamic grand potential (.s,’ . J,’ ), which is 
defined as the following set of the four Legendre trans- 
forms written down for the entropy four-vector (.\,. J,) 

r i.\, 
s, =,s,- 

?C 
.C_:;;:.J (IXa) 

(l8b) 

Computing of the pertinent four-divergence yields 

(7,(2!6’.~~)+V.(jci‘J,‘) 

= ~(‘,(ciC.(S8+6J.cSa)+~V.(iiC.65,, +riJ.cTL,,,) 

= ~i,(6C.ciu)+IV.[SC.ti.(J.u,)+ciJ.du)] 

= 6u.i,(5C+~V.[6C.6.(J.u,)]+6u.V.iiJ 

= cSJ*bVu (19) 

where due to the conservation laws (6). the last line 
represents the same excess entropy production as that 
in equations (9). (I I) and (16) with the help of the 
entropy. In the above transformations the relation 
J, = J - u was used to determine the partial derivatives 
J,.<- = ?J,/i3C = J * Su/?C : J,., = c?J,/?J = u. 

The above result solves the long-standing difficulty 
of apparent nonequivalence between various thermo- 
dynamics potentials, observed if the second order 
differentials of thermodynamic densities are used in 
the linear stability approaches [16]. The equivalence 
shown here occurs only in the range of small per- 
turbations (linear stability, interchangeability oper- 
ations). It is associated with the equality of the small 
changes of thermodynamic potentials around equi- 
librium, known in statistical mechanics [29]. 

4. ENTROPY EXCESS FUNCTIONAL, EXTREMUM 
CONDITIONS AND LINK WITH ONSAGER’S 

CRITERION 

We will show that the perturbed dynamics follow 
from a variational principle for the perturbed entropy 
four-vector give conservation laws, equation (6). The 
variational principle. equation (21) below. describes 
the second law in terms of the two excess dissipation 
functions. The first is flux dependent and the second 
is force dependent. Use of both functions is necessary 
for validity of the variational formulation. 

The conservation laws perturbations (6) are built 
Into the entropy functional (21) with the help of the 
perturbed vector 6w which represents the vector of 
associated Lagrangian multipliers, bw = (fits,,, 6rr,. &I,,, 

hw ,I- 1. hi,,). This vector constitutes an adjoint 
of the vector differential operator appearing on the 
left hand side of equation (6). The inclusion of con- 
straints does not change the numerical value of the 
entropy functional but influences its extremum pro- 
perties which then correspond to the free (uncon- 
strained) extremum. The physical meaning of 6w fol- 
lows from formal properties of the Lagrangian 
multipliers, which characterize the change of the opti- 
mization criterion with change in the value of the 
constraint. The extremum value of 6w is a vector of 
kinetic conjugates of the perturbations 6C and hJ 
in equation (6). corresponding with the excess entropy 
function generated by the functional (21). In the local 
equilibrium limit. on the extremal surfaces of the func- 
tional (21) the vector w and its perturbation ciw 
coincide with the corresponding Gibbsian quantities 
u and &I, equation (13), and, in a stable process. both 
perturbations tend to vanish 

)im &w = ,lim &I = fin; [iiT ‘,(6p, : T), 

(c$il:r,.. .s(p,2:‘r,. -h(@T ‘,I = 0. (10) 

The coincidence w and u does not occur however off 
any limiting equilibrium solution and, therefore, w 
and u are generally two distinctive sorts of the field 
variables in the entropy functional extremized. As 
long as no constraint linking w. u. bw and CSU is 
imposed. w and u constitute two fields independent of 
the other. They may be interpreted, respectively. as the 
transfer (Onsagerian) intensities and thermodynamic 
(Gibbsian) intensities, which coincide in a stable lim- 
iting situation whenever a sort of local equilibrium 
emerges. When the limiting manifold is that of Gibbs 
(genuine equilibrium manifold) strong conditions 
Vu = 0 and J = 0 hold. but they are unnecessary at 
stable nonequilibrium steady states where only sus- 
tainability of a inhomogeneous state in time is real- 
ized. Any unperturbed transfer intensity is the Lag- 
rangian multiplier of the unperturbed conservation 
law. whereas any Gibbsian intensity, equation (I 3). is 
the appropriate partial derivative of the entropy with 
respect to the adjoint extensity. On stable extremal 
solution SW tends to 6u and both tend to vanish at t + 
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cc. One may regard that a pseudo local-equilibrium 
situation is created at stable steady states far from 
equilibrium, and then w may converge to non- 
equilibrium intensities I, equation (17), that are still 
the partials of an extended entropy although they then 
depend on both C, and J, (extended thermodynamics). 

The governing functional describes the behavior of 
the perturbed entropy vector between the two fixed 
times r, and a subsequent t2 

fS’S(tz) = min 
( 

;a’s(t,) 

s ‘2 

+ -;“‘J,(6J, &I) dA dt 
(,.A 

‘2 

+ si ~L~‘(u):~JGJ+~L(u):V~UV~U 
I,.\ 

+ &! . (21) 

where for brevity single integral symbols have been 
used to multiple space-time integrals. See equation 
(19) for computation of the perturbation 
(l/2) d2J,(6J, &I) in the local equilibrium model. The 
derivation of the above functional structure from an 
error criterion has been omitted here as it is fully 
analogous to the derivation of the unperturbed struc- 
ture given in an earlier work (for the conservative 
thermal processes [48]). Equation (21) states that, 
(1/2)b2S(tz) = min[(l/2)6~S(t,)+(1/2)62Sp’“d-(1/2) 
B2Sexch]. Here 62Sp’“d and h2Sexch are the production 
and exchange components of the second perturbation 
of entropy. (The change of entropy itself is obtained 
for the extremal surface of the unperturbed functional 
as (S(t,) =(.S(t,)+Sprod- Sexch)), see [48].) For the 
functional minimum it is required that the first vari- 
ation of (21) vanish for all free variations of per- 
turbations 6u, 6J, their derivatives, V au, V 6J and 6w 
excluding those 6u and 6J which are frozen to zero 
at the system boundary. The set of Euler-Lagrange 
equations 

variation derivatives 6A/6q’ = 0 or 

__V.E__ dA a ah 

aq ~ = 0 (22) avq at a(aqjat) 

where A is the integrand of the functional extremized. 
holds for free variations of the steady-state per- 
turbations q’ = (&I, 6J and 6w) and for arbitrary fixed 
region of the physical space. 

For the vanishing boundary perturbations [con- 
stant state parameters and/or flows at the system 
boundaries] the surface term in equation (21) can be 
ignored and the functional (21) can be ‘gauged’ by 
transforming it into an equivalent form which yields 
the same equations for relaxing perturbations. This is 
made by subtracting from equations (21) the space 
time divergence a 6C 6w/& +div(dJ 6~). As it is well 

known from variational calculus subtracting such 
divergences does not change the extremum properties 
of the original functional, in particular the Euler- 
Lagrange equation (22) is still valid. The so-trans- 
formed functional shows an explicit correspondence 
to the classical Onsager’s criterion [l] whereby the 
phenomenological laws follow from the restricted 
variation (frozen u) of the expression 

min (fL_’ : JJ-J*Vu)dV (23) 

with respect to the fluxes J. This yields J = L -Vu as 
the only outcome ; no information about the thermo- 
dynamic densities C or intensities u is obtained. 
Extensions involving the conservation laws and equa- 
tions of change were pursued later in many research 
groups (Prigogine [5] ; de Groot and Mazur [17] ; 
Glansdorff and Prigogine [16] ; Gyarmati [ 1 I]) and 
coworkers of these authors. 

Onsager’s functional (23) can be obtained from our 
functionals (21) or (24) in the case of equilibrium 
reference state when 6J = J and the derivative 
8 6w/cYt = awlat vanish. Then, when only SJ is varied 
in equation (24) and w converges to u on the extremal 
surfaces (local equilibrium), the Onsager’s functional 
(24) and his equation J = L * Vu follow from equation 
(24) as the close-to-equilibrium formulae. This shows 
that Onsager’s formulation is limited to equilibrium 
steady states where not only the matrix L is symmetric 
but also the reference state is homogeneous. 

A modified or ‘gauged’ functional (21) has the form 

fd2S min ~L(u):V~UV~U+;L(U)-’ :6J6J 

-X(u).% -6J*V6w 

+;b:@w-6u)(6w-&r) dVdt. 1 (24) 

The surface term has been omitted here, as it does not 
influence the partial differential equations for tran- 
sients. To preserve the explicit convergence of the 
kinetic perturbations 6w to thermodynamic ones &I, 
a term lj2b : (dw-6u)(6w-&I) has been introduced 
under the integral of &ST with b being the Lagrangian 
multiplier of the penalty constraint (6w-6~)~ = 0 
which provides the equality 6w = 6u satisfied by per- 
turbations. The whole term may be interpreted as the 
excess entropy production of a lower-hierarchy, fast 
relaxation process which leads w to u (and 6w to au). 
Note that the use of b excludes 6w as a Lagrangian 
multiplier of the perturbed balance equations (6) 
which was originally assumed in equation (21). In 
effect equations (21) and (24) are not equivalent; 
equation (21) is more flexible and general, whereas 
equation (24) is more restrictive but pertains more 
accurately to those physical situations in which 
undoubtedly u = w (local equilibria and stable 
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pseudoequilibria at steady state manifolds). Other- 
wise, it may be shown that equation (2 I ) is capable of 
describing situations in which potentials u and w 
differ, those which, perhaps, may be referred to case 
of inherent local nonequilibria associated with insta- 
bilities. Since however the reference state is not varied. 
the functional (24) cannot predict neither equality 
u = w nor other properties of reference state. as e.g. 
the function L(u). These properties must be assumed. 
which is typical in the stability analyses. Only the 
weaker condition iiw = iiu results from equation (24) 
via variation of b. and the stronger one u = w must 
be obtained from an unperturbed counterpart ofequa- 
tion (24). see [48]. 

5. DISCUSSION OF EXTREMUM CONDITIONS 
AND LOCAL EQUILIBRIUM 

The extremum condition of (112) d;‘g with respect 
to b is equation (25). or the constraint which preserves 
the equality of 6w and &I 

ciu = (SW. (25) 

On stable paths each of these perturbations tends to 
vanish regardless of the local equilibrium (u = w). 
otherwi.,c both remain finite in time. Other extremum 
conditions for ( 12) 6’5 equation (24). are equations 
(26))(28). which follows the same for both functionals. 
equations (21) and (24). In the transient situation 
equations (21). (22) and (24) yield for free variations 
of 6~. 65 and 6w a quasilinear set representing (at 
iiw = 6~) the model of transients of heat. mass and 
electric charge 

L(U) ’ .riJ = vh ( 

where e = CCC% is the thermodynamic capacity 
matrix or the entropy hessian. The extremum con- 
ditions for the functional (31) are equations (26) 
(28) exclusively, corresponding to a broader physical 
situation. 

Of the extremum conditions (26))(28). the first 
equation is. of course, the perturbed vector of the 
conservation laws in the system whereas the second is 
the perturbed quasilinear kinetics with the reference- 
state dependent phenomenological matrix L(u). The 
last equation is the perturbed Fourier-Kirchhoff type 
matrix equation of change, that links the perturbed 
fields of the temperature, chemical potentials and elec- 
trical potential. An equation could also be obtained 
by eliminating the variable 6w from the set, which is 
a valid result linking the state &I (or 6C) and the flux 
65, independent of the balance perturbations. For the 
special case of the pure heat transfer problem. one 
could thus eliminate the temperature perturbations 

from the (perturbed) first and the second Fourier’s 
laws of heat conduction (in spite of the fact that such 
elimination does not add anything new to these tn’o 
clu.ssicul equations). In a more general situation, 
described by equation (21). equations (26)-(28) rep- 
resent a generalization of the classical model. In prac- 
tice. however, one assumes the local equilibrium and 
deals as a rule, with the two equations (27) and (28) 
rather than with combination of all of them. The 
theory developed generalizes Onsager’s variational 
approach for the thermo-electrochemical relaxations 
towards the steady-states which are close to equi- 
librium. This steady state pertains to the situation 
when the Onsager’s phenomenological coefficients L,I 
may depend on the thermodynamic state of the system 
( Tand c,), yet the phenomenological equations remain 
linear with respect to the forces (gradients). This. 
nonetheless, can comprise a relatively vast class of 
systems. The nonlinear relations. which link the exten- 
sive and intensive thermodynamic quantities in the 
reference state. are satisfied due to the quasilinearity 
assumption which allows one to apply the exact (state 
dependent) functions L(u) and e(u). 

A pseudo-local-equilibrium-linked transients and 
corresponding pseudo-local-equilibrium at a stable 
steady state can be obtained from equations (26)- 
(28) even without extra condition (25). as a limiting 
process. For an unperturbed counterpart of equations 
(26)-(28) it is well known that the Fourier-Kirchhoff 
law follows in the local equilibrium limit from the 
energy conservation equation and the Fourier law of 
conduction. i.e. the three these equations ure depen- 
dent. Is this local equilibrium effect sufficient for stab- 
ility? On the extremal surfaces of the functional (21). 
for the vanishing boundary perturbations, the partial 
time derivative of the four-dimensional integral of 
equation (21) is 

‘-I 

= L(u): [Vd‘uV(:,(iiu)+VciwVd,(6w)] dk’dt 
.,t, b 

:‘I 
= 

! 
[-V*(LV~U)~;,(~U)-V*(LV~W)~,(~W)]~C’~~ 

I, \ 

(29) 

where the divergence theorem was used and the 
boundary term with vanishing perturbations was set 
to zero. With the help of equation (28), equation (29) 
yields 

+S~ ’ :V*(LV6w)V.(LV6u)]dVdt. (30) 
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Since the entropy hessian E < 0, the above time deriva- 
tive is negative whenever 6u = 6w. Thus, the local 
equilibrium, which preserves both u = w and &I = 6w, 
is sufficient for the asymptotic stability of the steady 
state on the basis of the Liapounov second theorem 
applied to the positive potential function V = ;6*Z 
and its negative time derivative, equation (30), at 
u = w. However, the necessity of neither local equi- 
librium nor the conditions u = w or &I = 6w for stab- 
ility are not proven. 

In any genuine disequilibrium situation, the vari- 
ables w and u may differ. The distinction between w 
and u is allowed by equation (21) and the stationarity 
conditions. equations (26)-(28). Should one omit the 
b term in equation (24) the coincidence of w and u in 
some systems would not be secured in a general case, 
and an evolution through a set of disequilibrium 
states, with w # u, would be admitted. This might 
refer, in particular, to any system where a growing 
unstable behavior is observed. Yet, in most situations 
the equality of w and u and its weaker form 6w = Su 
are reasonable limitations, especially when one relies 
on use of the Onsager’s potentials, which, ultimately, 
have this strong restriction incorporated in their deri- 
vation. Then, given conservation laws, the com- 
patibility of kinetics with equilibrium can be attained 
without any further extra constraints [48, 551. 

On the other hand, the possibility of independent w 
and u in a general case proves that an orthodox treat- 
ment of the entropy or any other thermodynamic 
function as function of the classical state C only is too 
restrictive. The entropy becomes a function of the 
extended state (II, J, . .) in agreement with Truesdell’s 
equipresence principle [56, 571 and extended thermo- 
dynamics [46]. This conclusion can be a suitable 
argument for generalization of the integrand of equa- 
tion (21) to highly nonequilibrium phenomena, where 
the classical meaning of the temperature and other 
intensities is lost, in general when heat transfer or 
change of local thermodynamic variables occurs at 
a rate comparable to the internal relaxation of the 
system. 

Our imbedding of the transient process in the four- 
dimensional space-time has resulted in the following 
benefits : physical insight to the related functionals in 
terms of the four-vector of the grand thermodynamic 
potential ST, removal of subjectively ‘frozen’ fields, 
and, ofcourse, the nonlinear background state. For an 
isolated distributed system approaching equilibrium, 
this theory implies the least possible increase of the 
system entropy between any two successive con- 
figurations. For steady-state processes (open systems), 
the principle implies the minimum of the functional 
(24) related on its extremum surfaces to ther- 
modynamic grand potential, for constant per- 
turbations at the system boundary. Its unperturbed 
counterpart goes over into the Onsagerian principle 
around equilibrium. The theory is integral, yet yield- 
ing all differential (local) phenomenology, and it does 
admit variations of all possible physical fields, for 

known thermodynamic and transport properties 
which may be nonlinear. The time-dependent func- 
tional replaces successfully three-dimensional integ- 
rals over physical space, considered in earlier works, 
which could only describe the properties of the 
entropy production, but neither the transient behavior 
nor the behavior of the thermodynamic potential in 
the sense of equations (18) and (19). 

The possibility of more than one temperature in 
a nonequilibrium fluid has also been shown in the 
statistical way, in Karkheck’s analysis of the Boltz- 
mann kinetic equation. which was obtained from the 
maximum entropy formalism [58]. Also the Ham- 
ilton’s action approach [4&42] (which is principally 
different from the approach used here) distinguish 
sharply between the static and kinetic intensities. 
Finally, such a distinction appears explicit in extended 
irreversible thermodynamics [46] and nonequilibrium 
molecular dynamics [59]. However, no unifying 
theory is known until now which could show the 
equivalence between various kinetic temperatures in 
all cases. This should be a task of further investiga- 
tions which should, perhaps, exploit to a larger extent 
our conclusion that local equilibria are an effect of the 
reduction of the operational variables occurring on 
limiting (steady state) manifolds. Nonequilibrium 
molecular dynamics simulations (with Lennard-Jones 
particles) have shown [60] that the local thermo- 
dynamic functions in a system with severe gradients 
in temperature have the same value as they would 
have if the system were in equilibrium. A criterion 
compatible with this result for the state functions, was 
that the fluctuation in the temperature was 39/o in a 
control volume. The magnitude of the control volume 
was so small that the temperature variation across the 
volume element was also around 3%. This means that 
we can take w = u for most situations encountered in 
practice. However, this is. by no means, an argument 
against regarding the thermodynamic state and 
thermodynamic adjoints as variables independent of 
each other off the Gibb’s equilibrium manifold. 

This development, promoting the conclusion that 
the governing potential of open irreversible systems is 
related to the excess of the grand potential ST taken 
in the form of its four-vector (ST is the integral of 
a nonequilibrium ratio P/T over the volume, or the 
Legendre transform of the entropy) is in agreement 
with both classical equilibrium thermodynamics [29] 
and Grmela’s recent results obtained for spatially 
inhomogeneous irreversible systems [35.36.38]. These 
latter works add also a valuable ingredient to the 
proof of the conclusion considered, which has therein 
been obtained by an entirely different approach which 
uses the powerful bracket formalism for dissipative 
systems. The present work is complementary to our 
earlier works [48, 61, 621. However, those previous 
works have been directed towards variational for- 
mulation of the second law without explicitly defined 
manifold of attraction, which can be understood there 
as the equilibrium manifold. All these results call for 
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use of thermodynamic potentials in irreversible pro- 
cesses on an equal footing. as in classical thermo- 
dynamics. However. such methodology is often 
rejected in many contemporary approaches to irre- 
versible thermodynamics. sometimes even at the 
expense of the paradoxical assignment of the positive 
sign to the time derivative of entropy in open systems. 
see. e.g. equation (1.1 I ) in [63]. Nonclassical stability 
criteria of nonequilibrium steady state, stemming 
from classical thermodynamics, are also explicit in 
recent work of Ross and his coworkers [64]. The for- 
mulation presented here has a natural change to orig- 
inate further developments which will consider effects 
caused by violation of Onsagerian symmetry, for evol- 
utions towards steady states which are located in the 
state space far from the Gibbs equilibrium surface. 
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